3.103 \(\int \cot (c+d x) (a+i a \tan (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=104 \[ -\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

[Out]

(-2*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d + (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d
*x]]/(Sqrt[2]*Sqrt[a])])/d - (2*a^2*Sqrt[a + I*a*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.286589, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {3556, 3600, 3480, 206, 3599, 63, 208} \[ -\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(-2*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d + (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d
*x]]/(Sqrt[2]*Sqrt[a])])/d - (2*a^2*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 3556

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3600

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[((a + b*Tan[e + f*x])^m*(a - b*Tan[e + f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot (c+d x) (a+i a \tan (c+d x))^{5/2} \, dx &=-\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}+(2 a) \int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} \left (\frac{a}{2}+\frac{3}{2} i a \tan (c+d x)\right ) \, dx\\ &=-\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}+a \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)} \, dx+\left (4 i a^2\right ) \int \sqrt{a+i a \tan (c+d x)} \, dx\\ &=-\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}+\frac{a^3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac{\left (8 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}-\frac{\left (2 i a^2\right ) \operatorname{Subst}\left (\int \frac{1}{i-\frac{i x^2}{a}} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{2 a^2 \sqrt{a+i a \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 1.14003, size = 148, normalized size = 1.42 \[ -\frac{\sqrt{2} a^2 e^{-i (c+d x)} \sqrt{a+i a \tan (c+d x)} \left (\sqrt{2} e^{i (c+d x)}-2 \sqrt{2} \sqrt{1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+\sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{1+e^{2 i (c+d x)}}}\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

-((Sqrt[2]*a^2*(Sqrt[2]*E^(I*(c + d*x)) - 2*Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))] + S
qrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[a + I*a*Ta
n[c + d*x]])/(d*E^(I*(c + d*x))))

________________________________________________________________________________________

Maple [B]  time = 0.266, size = 329, normalized size = 3.2 \begin{align*} -{\frac{{a}^{2}}{d \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) }\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}} \left ( 4\,i\sqrt{2}\arctan \left ({\frac{\sqrt{2}}{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +i\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) \sin \left ( dx+c \right ) -4\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +2\,i\sin \left ( dx+c \right ) +2\,\cos \left ( dx+c \right ) -2 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

-1/d*a^2*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(4*I*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*
x+c)+1))^(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+I*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(
1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-4*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-ln(((-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*I*sin(d*x+c)+
2*cos(d*x+c)-2)/(I*sin(d*x+c)+cos(d*x+c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.39452, size = 1111, normalized size = 10.68 \begin{align*} -\frac{2 \, \sqrt{2} a^{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} - 2 \, \sqrt{2} \sqrt{\frac{a^{5}}{d^{2}}} d \log \left (\frac{{\left (\sqrt{2} \sqrt{\frac{a^{5}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a^{2}}\right ) + 2 \, \sqrt{2} \sqrt{\frac{a^{5}}{d^{2}}} d \log \left (-\frac{{\left (\sqrt{2} \sqrt{\frac{a^{5}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2}{\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a^{2}}\right ) + \sqrt{\frac{a^{5}}{d^{2}}} d \log \left (\frac{{\left (\sqrt{2}{\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} + 2 \, \sqrt{\frac{a^{5}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a^{2}}\right ) - \sqrt{\frac{a^{5}}{d^{2}}} d \log \left (\frac{{\left (\sqrt{2}{\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} - 2 \, \sqrt{\frac{a^{5}}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a^{2}}\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-(2*sqrt(2)*a^2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(2)*sqrt(a^5/d^2)*d*log((sqrt(2)*sqr
t(a^5/d^2)*d*e^(2*I*d*x + 2*I*c) + sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e
^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/a^2) + 2*sqrt(2)*sqrt(a^5/d^2)*d*log(-(sqrt(2)*sqrt(a^5/d^2)*d*e^(2*I*d*x
 + 2*I*c) - sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-2*I
*d*x - 2*I*c)/a^2) + sqrt(a^5/d^2)*d*log((sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
+ 1))*e^(I*d*x + I*c) + 2*sqrt(a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2) - sqrt(a^5/d^2)*d*log
((sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(a^5/d^2)*
d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a^2))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c), x)